Formulas to obtain mechanical properties of elastomeric bearing
Property | Notation | Formula |
Single rubber layer thickness | tr | |
Number of rubber layers | n | |
Steel shim thickness | ts | |
Outer diameter | Do | |
Inner/lead core diameter | Di | |
Rubber cover thickness | tc | |
Shear modulus | G | |
Bulk modulus of rubber | Kbulk | |
Yield stress of lead | σL | |
Density of bearing | ρb | |
Total rubber layer thickness | $t_r$ | ntr |
Total height | h | ntr+(n−1)ts |
Bonded rubber area | A | π4[(Do+tc)2−D2i] |
Lead area | AL | π4D2i |
Characteristic strength | Qd | σLAL |
Yield displacement | Y | |
Shape factor | S | Do−Di4tr |
Moment of inertia | I | π64[(Do+tc)4−D4i] |
Adjusted moment of inertia | Is | IhTr |
Volume of bearing | Vb | Ah |
Mass of bearing | mb | ρbVb |
Diameter ratio | rd | DoDi |
Central hole factor | F | (rd)2+1(rd−1)2+1+rd(1−rd)ln(rd) |
Compression modulus | Ec | (16GS2F+43Kbulk)−1 |
Rotational modulus | Er | Ec3 |
Vertical stiffness | Kv | AEcTr |
Horizontal post yield stiffness | Kd | GATr |
Horizontal yield strength | FY | Qd+KdY |
Horizontal elastic stiffness | Kel (K1) | FYY |
Stiffness ratio | α | KdKel (=K2K1) |
Torsional stiffness | Kt | 2GIsh |
Rotational stiffness | Kr | ErIsh |
Critical buckling load | Pcr | π√ErGIA0Tr |
Critical buckling displacement | ucr | PcrKv0 |
Cavitation force | Fc | 3GA0 |
Cavitation displacement | uc | FcKv0 |