

Elastomeric seismic isolation bearings

Modelling, analysis and design

Manish Kumar

Assistant Professor Department of Civil Engineering IIT Bombay

Outline

- Introduction
- Modeling techniques
 - Finite element
 - Discrete element
- Analysis methods
- Design procedures
- Advanced isolator models
- Contemporary softwares
- Conclusions

Seismic Isolator types

- Elastomeric/rubber bearings
 - Low damping rubber (LDR) bearings
 - Lead-rubber (LR) bearings
- Sliding bearings
 - Flat slider bearings
 - Friction pendulum (FP) bearings
 - Single FP bearings
 - Double FP bearings
 - Triple FP[™] bearings
 - T/C friction isolator

Internal section view of leadrubber bearing

Friction (single pendulum) isolator

Elastomeric bearings

- Low damping rubber (LDR) bearings
- Lead-rubber (LR) bearings
 LDR bearing + lead core
- High damping rubber bearings
- Rubber properties
 - Neoprene rubber
 - Synthetic rubber with carbon filler
 - Natural rubber
 - Naturally cured rubber

Internal section view of lead-rubber bearing

Erzurum Hospital, Turkey

Rubber bearing manufacturing

Process	Description
Mixing of rubber	Raw rubber, carbon black, sulfur and other additives are mixed
Sheeting (calendaring) of rubber	Rubber is cut into the desired shapes (circular, annular)
Cutting of rubber	Rubber is cut into the desired shapes (circular, annular)
Cutting of steel plate	End plates and shim plates of the required thickness are cut into desired shapes
Steel plate surface treatment	End plates and shim plates are sand-blasted
Application of adhesives	End plates and shim plates are coated with (proprietary) adhesives
Forming (lay-up) of bearing	End plates, shim plates and rubber sheets are assembled; cover rubber is placed on the outside of the bearing
Curing (vulcanization)	The formed bearing is set in a mold and cured under pressure and heat: rubber is vulcanized and bonded to the steel
Finishing	End plates are painted; lead-plug is inserted in for lead-rubber bearings

Courtesy of M. Constantinou, University at Buffalo

Sliding bearings

Double FP bearings

Triple FP[™] bearings

Flat-slider bearings

Single FP bearings

MODELING AND ANALYSIS

Modeling

Modeling

- Continuum FE model is appropriate for studying component level response
 - Difficult to model and computational demanding
- Discrete model is required for base-isolated structure comprised of hundreds of such bearings
 - Simple to model and computationally efficient

Node 2 u1 v u1 v u2 u2 u3 Node 1 u1 u3 Discrete model

Discrete Model

- 2 Node, 12 DOFs
- Connected by 6 springs
 - Represents mechanical behavior in 6 directions

Modeling: state of practice

- Axial
 - Linear spring
- Shear (2 horizontal directions)
 Bi-directional Bouc-Wen model
- Torsion
 - Linear elastic with stiffness = $\frac{GJ}{T_{rr}}$
- Rotation (about 2 horizontal directions)
 - Linear elastic with stiffness = $\frac{IE_r}{T_r}$

Axial behavior

- Vertical axial stiffness is much greater than lateral stiffness
- Large vertical stiffness due to
 - Incompressibility of rubber
 - Lateral restrain provided by steel shims
- Implied infinite capacity under compression and tension
 - Allow simplified modeling

Idealized axial behavior

Axial stiffness

• Axial stiffness of multilayer bearings in compression

•
$$K_{v} = \frac{A}{\sum_{i} t_{i} \left[\frac{1}{E_{ci}} + \frac{4}{3K}\right]} = \frac{AE_{c}}{T_{r}}$$

- $\sum_i t_i = T_r$ (total rubber layer thickness)
- K = 2000 MPa bulk modulus of rubber
- $E_{ci} = 6GS^2$ (compression modulus of a constrained rubber layer)
- Obtained using the "Pressure" solution of Constantinou et al. (1992).
- Compression Modulus $E_c = \left(\frac{1}{6GS^2} + \frac{4}{3K}\right)^{-1}$

Shape factor

- Very important geometric parameter
- $S = \frac{Loaded area of rubber}{Area free to bulge}$ $S = \frac{\frac{\pi D^2}{4}}{\pi Dt} = \frac{D}{4t} : \text{Circular bearing}$ $S = \frac{\frac{\pi}{4}(D_2^2 D_1^2)}{\pi (D_2 + D_1)t} = \frac{D_2 D_1}{4t} : \text{Circular hollow bearing}$ $S = \frac{\frac{\pi}{4}(D_2^2 D_1^2)}{\pi D_2 t} = \frac{D_2^2 D_1^2}{4D_2 t} : \text{Lead rubber bearing}$

- Elastomer seismic isolation bearings have shape factors between 10 and 30.
- Small shape factor results in vertical flexible isolation bearings with small axial load capacity

Shear behavior

- Characterized by small shear stiffness
- Important parameters
 - Characteristics strength, Q_d
 - Yield strength, F_Y
 - Elastic stiffness, K_{el}
 - Post-elastic stiffness, K_d
 - Effective stiffness at displacement U, K_{eff}
 - Yield displacement, $Y \approx 0.05T_r 0.1T_r$
 - Stiffness ratio, $\alpha = \frac{K_d}{K_{el}} \approx 0.1$
 - Effective damping ratios, β

Idealized shear behavior

Shear behavior

• Important relationships:

$$F_Y = \frac{Q_d}{1 - \alpha}$$

$$\beta = \frac{Area \ under \ loop}{2\pi K_{eff}U^2} = \frac{4Q_d(U-Y)}{2\pi K_{eff}U^2}$$

$$Q_d = \frac{\pi\beta K_{eff}U^2}{2(U-Y)}$$

$$K_{eff} = \frac{F_{max}}{U} = \frac{Q_d + K_d U}{U} = \frac{Q_d}{U} + K_d$$

Idealized shear behavior

- For large values of displacement U: $K_{eff} \approx K_d$
- Preliminary sizing of bearing (discussed later) can be done using K_d without the need to obtain U.

Shear stiffness

- Experimental determination using force deformation loops under harmonic testing
- Force deformation loops can be
 - Viscoelastic
 - Hysteretic

$$K_{eff} = \frac{|F^+| + |F^-|}{|\Delta^+| + |\Delta^-|}$$

• Shear modulus is determined using $V = \frac{G_{eff}A}{G_{eff}A}$

$$K_{eff} = \frac{-Sf}{T_r}$$

A : bonded rubber area

 The effective shear modulus of natural rubber bearings for seismic isolation applications typically vary between 0.4-1.0 MPa

Hysteretic behavior

Shear hysteresis

- The two horizontal directions are coupled
- Extension of Bouc-Wen model extended by Nagarajaiah et al. (1989) for seismic isolation applications:

$$\begin{cases} F_x \\ F_y \end{cases} = c_d \begin{cases} \dot{U}_x \\ \dot{U}_y \end{cases} + K_d \begin{cases} U_x \\ U_y \end{cases} + (\sigma_{YL}A_L) \begin{cases} Z_x \\ Z_y \end{cases}$$

$$Y \begin{cases} \dot{Z}_{x} \\ \dot{Z}_{y} \end{cases} = \left(A[I] - \begin{bmatrix} Z_{x}^{2} \left(\gamma Sign(\dot{U}_{x}Z_{x}) + \beta \right) & Z_{x}Z_{y} \left(\gamma Sign(\dot{U}_{y}Z_{y}) + \beta \right) \\ Z_{x}Z_{y} \left(\gamma Sign(\dot{U}_{x}Z_{x}) + \beta \right) & Z_{y}^{2} \left(\gamma Sign(\dot{U}_{y}Z_{y}) + \beta \right) \end{bmatrix} \right) \begin{cases} \dot{U}_{x} \\ \dot{U}_{y} \end{cases}$$

Idealized shear behavior

• After yielding

$$A/(\beta+\gamma)=1$$

 $Z_x = \cos \theta, \quad Z_y = \sin \theta$

Shear hysteresis

• Total horizontal force is the sum of rubber and hysteretic components

Torsional and rotational behavior

- For the rotation of circular and square bearings:
 - Rotational modulus: $E_r = \frac{E_c}{3}$
- Torsional and rotational behaviors of individual bearings are not going to affect the response of the isolation system.
- Rotation
 - Linear elastic with stiffness = $\frac{IE_r}{T_r}$
- Torsion
 - Linear elastic with stiffness = $\frac{GJ}{T_r}$

ADVANCED ISOLATOR MODELS

Advanced models

- Modeling challenges
 - Axial
 - Cavitation in tension
 - Buckling capacity in compression
 - Shear
 - Strength degradation in LR bearing
 - Coupling of horizontal motions
 - Axial load dependent stiffness

Idealized axial behavior

Idealized shear behavior

Advanced models

Varying vertical stiffness (Warn and Whittaker, 2006)

Stress and strain dependency of shear modulus (DIS, Inc.)

Advanced models

Cavitation in tension due to uplift and rocking (Warn, 2006)

Advanced models: tension

- A new phenomenological model
 - Pre-cavitation
 - Same as in compression
 - Post-cavitation behavior
 - Concept of "true area"
 - $\partial A / \partial u \propto A$
 - Permanent damage
 - Strain dependent damage index
 - $F_{cn} = F_c(1 \emptyset)$
 - $\emptyset = \emptyset(u_{\max})$

Strength-degradation in cyclic tension

Advanced models: compression

- Based on two-spring model
- Axial stiffness
 - Depends on shear deformation
- Critical buckling load
 - Bi-linear area reduction method
 - Validated by Warn et al.(2006)

Two-spring model (Constantinou et al., 2007)

Bi-linear area reduction method

Advanced models: shear

- Bouc-Wen model for isolators
 Nagarajaiah et al.(1991)
- Horizontal stiffness

$$-K_{H} = K_{H0} \left(1 - \left(\frac{P}{P_{cr}} \right)^{2} \right)$$

- Strength degradation
 - Heating of lead-core in LR bearing
 - Based on Kalpakidis et al. (2010)

Horizontal stiffness (Kelly, 1993)

Strength degradation in a LR bearing

Advanced models: summary

Axial (vertical) direction

Shear (horizontal) direction

Implementation

- User elements in OpenSees and ABAQUS
 - Low damping rubber bearing: ElastomericX
 - Lead rubber bearing: LeadRubberX
 - High damping rubber bearing: HDRX
- Implementation in LS-DYNA as user material – Addition to *MAT_SEISMIC_ISOLATOR
- Input parameters
 - Geometric and material properties
 - Default values of optional parameters provided

Implementation

- Physical model
 - 2 Node, 12 DOF, 3D discrete element
 - Linear springs in rotational direction

Implementation

- User Elements (UELs)
 - Requires nodal force vector and stiffness matrix
 - Allows parameter update

Advanced models: comparison

Properties	3DBASIS	SAP2000	PERFORM3D	LSDYNA	ABAQUS	OpenSees	New
Coupled horizontal directions	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Coupled horizontal and vertical directions	No	No	No	No	No	No	Yes
Different tensile and compressive stiffness	No	No	Yes	Yes	Yes	Yes	Yes
Nonlinear tensile behavior	No	No	No	No	Yes	Yes	Yes
Cavitation and post- cavitation	No	No	No	No	No	No	Yes
Nonlinear compressive behavior	No	No	No	No	Yes	Yes	Yes
Varying buckling capacity	No	No	No	No	No	No	Yes
Heating of lead core	No	Nondo	-US Wo Ng hop on	Safety NONPPs	No	No	Yes

repluary 15, 2016

ANALYSIS USING CONTEMPORARY SOFTWARE PROGRAMS

Axial behavior: rubber isolator

- Analysis procedure in two software programs
 - SAP2000: discrete model
 - ABAQUS: FE model
- Modal analysis
- Response history analysis

Continuum FE model

DISCRETE MODEL: SAP2000

Axial behavior: rubber isolator

AXIAL

FORCE

AXIAL DEFORMATIO

 K_{vc}

- U1 directional property
 - Always linear
- Effective stiffness: options
 - Make it fixed (check fixed box)
 - Assign a large value
 - Note: don't assign unrealistic large values
 - Calculate from bearing properties

-
$$K_v = \frac{AE_c}{T_r}$$
 (See Constantinou et al (2007) for details)

- Effective damping
 - It is damping coefficient c_d and not the damping ratio $\xi_{Axial behavior}$
 - Usually a value of 0 is recommended
 - If required c_d corresponding to 2-3% of damping ratio can be used for natural rubber

Axial behavior: friction isolator

- U1 directional property
 - Always nonlinear
 - Compression only (gap)
- Effective stiffness: options
 - Make it fixed (check fixed box)
 - Assign a reasonably large value
 - 1000 times the horizontal stiffness

Shear behavior: rubber isolator

- U2, U3 directional properties
 Coupled bidirectional Bouc-Wen
- Mechanical properties
 - Calculate from bearing properties
 - See Constantinou et al (2007) for details
- Stiffness = K_{el}
- Yield strength = F_Y
- Post Yield Stiffness Ratio = K_d/K_{el}

K Link/Support Directional Pro	perties 🛛 🚬
Mar Mar Mar	
Identification	Load Dubbar Rearing
Property Name	Lead Rubber bearing
Direction	U2
Туре	Rubber Isolator
NonLinear	Yes
Properties Used For Linear A	nalysis Cases
Effective Stiffness	0.
Effective Damping	0.
Shear Deformation Location	
Distance from End-J	0.
Properties Used For Nonlinea	r Analysis Cases
Stiffness	0.
Yield Strength	0.
Post Yield Stiffness Ratio	0.
ОК	Cancel

Shear behavior

Shear behavior: friction isolator

- U2, U3 directional properties
 Coupled bidirectional Bouc-Wen
- Effective stiffness: options
 - Calculate from bearing properties

 See Constantinou et al (2007) for details
- Friction can be varied

$$-\mu = \mu_{fast} - (\mu_{fast} -$$

Identification			
Property Name	Signle Fricti	on Pendulum	_
Direction	U2		_
Туре	Friction Isolator		-
NonLinear	Yes		
Properties Used For Linear A	analysis Cases	•	
Effective Stiffness		0.	
Effective Damping		0.	
Shear Deformation Location			
Distance from End-J		0.	
Properties Used For Nonline	ar Analysis Ca	ses	
Stiffness		0.	
Friction Coefficient, Slow		0.	
Friction Coefficient, Fast		0.	
Rate Parameter		0.	
Net Pendulum Radius		1.	
ОК	Car	ncel	

DISCRETE MODEL: ABAQUS

ABAQUS: Connector Element

- Connector element
 - Similar to the Link/support element
- Elastic spring, dashpot, friction, plasticity, and damage
- Different directions between two nodes can be coupled, uncoupled or combined

Connector definition

👙 Create Connector Section				
Name: Bearing				
Connection Category	Connection Type			
Assembled/Complex	Translational type:	Cartesian 💌		
Basic MDC	Rotational type:	Rotation 💌		
O MPC	Available CORM:	U1, U2, U3, UR1, UR2, UR3		
	Constrained CORM:	None		
	Connection type diagram: 🍟			
Continue Cancel				

Basic connection

Assembled connection

Edit Connector Section			×			
Name: Bearing						
Type: Bushing 🥖						
Available CORM: U1. U2.	Available CORM: UI UI2 UI3 UR1 UR2 UR3 Constrained CORM: None					
Connection type diagram:	,,,, -`O`					
Patra in Ontines Tabl						
Behavior Options Table Options Section Data						
Behavior Options						
Plasticity			+			
			Elasticity			
			Damping			
			Friction			
Plasticity			Plasticity			
Definition: Nonlinear		_	Damage			
Coupling: 🔘 Uncouple	ed 🔘 Coupled		Stop			
Force/Moment: 🔲 F1	🗖 F2 🔲 F3 🔲 N	11 🔲 M2 🔲 M.	Lock			
Specify isotropic har	dening	_	Failure			
Specify kinematic bardening			Reference Length			
Integration						
Isotropic Hardening	Isotropic Hardening Kinematic Hardening Force Potential					
Definition: Tabular	Exponential la	w				
Use temperature-de	pendent data					
Number of field variab	les: 0 🛓		8:==			
Data						
Yield Force	Plastic	Rate				
/Moment	Motion					
1						
UK						

Connector material behavior

DISCRETE MODEL: LS-DYNA

LSDYNA: MAT_SEISMIC_ISOLATOR

- *MAT_SEISMIC_ISOLATOR (*MAT_197)
- Can be used to model
 - Elastomeric bearings
 - Flat slider bearings, single FP bearings
 - Double FP bearings and XY-FP bearings

CONTINUUM MODEL

Finite element models

- Only component level analysis is presented
- Three FE modeling approaches
 - 3D model of elastomeric bearing
 - Axisymmetric model of elastomeric bearing
 - Axisymmetric model of single rubber layer

Geometry

- Diameter *D* = 250 mm
- Total Rubber Thickness $T_r = 82.5 \text{ mm}$
- Shape factor *S* = 9.8

Indian Institute of Technology Bombay

Department of Civil Engineering

Elements

Axisymmetric
 – CAX8R

Three-dimensional
 – C3D20R

Materials

Rubber: hyperelastic

- Neo-Hookean (anisotropic)
- High bulk modulus (2000 Mpa)
- Low shear modulus (0.65 Mpa)

Steel: linear elastic

- Isotropic
- Young's Modulus: 210 Gpa
- Poisson's ratio: 0.3

Meshing

Axisymmetric model

- Mesh bias
- Structured meshing
- Quad elements

3D model

- Divided into sub-regions
- Swept meshing
- Hex only elements

Boundary conditions

Results: Axisymmetric

Stress state(Mises)

Logarithmic shear strain

Results: axisymmetric model

Stress(Mises)

Logarithmic shear strain

Results: 3D model

Stress(Von-Mises)

Logarithmic shear strain

Results comparison

Results comparison

• Shear stress along radius

PRELIMINARY DESIGN

Key design parameters

- Axial load capacity
 - Bearing should be able to sustain axial load with lateral response
- Lateral stiffness (shear modulus)
 - Determines the period of the isolation system

Internal section view of leadrubber bearing

 Ultimate shear deformation capacity

Design procedure

- Many procedures are available for preliminary sizing of the bearings
- Two procedures would be discussed here
 - Non-iterative
 - Iterative
- Preliminary design can later be verified using dynamic analysis
- Preliminary design process remains same irrespective of structure type (e.g., buildings, bridges, others)
 - Structure is idealized as SDOF system with isolation period and lumped superstructure weight
 - Isolation mode must be the primary dominating mode (participation factor>90%)

Base-isolated building idealized as SDOF system

Preliminary sizing: non-iterative

- Known parameters
 - Seismic weight of the superstructure, W
 - Shear modulus of the bearing, G (0.4-1.0 MPa)
 - Nominal yield stress of lead for LR bearing, σ_L (10-12 MPa)
- Assumed parameters
 - Time period of the isolation system, T (between 2-4 s)
 - Strength to supported weight ratio, Q_d/W (between 0.06 to 0.15)
 - Allowable service static pressure on the bearing, p_{static} (4-8 MPa)
- Values of the parameters to be obtained
 - Outer diameter, D_o
 - Inner diameter (or lead core diameter), D_i
 - Total rubber thickness, T_r

Preliminary sizing: non-iterative

- The time period (*T*) and strength ratio (*Q*_d/*W*) completely characterizes the horizontal response of base-isolated structures, *TxQy*: *T2Q12*.
- Bearing manufactures would specify which parameter values can reliably be achieved and based on that other design parameters need to be obtained.
- Values of obtain design parameters need to be confirmed with manufacturer to ensure that bearings with these properties can be produced.

$$A_{L} = \frac{(Q_{d} / W) \times W}{\sigma_{L}}; D_{i} = \sqrt{4\frac{A_{L}}{\pi}}$$
$$A = \frac{W}{P_{static}}; D_{o} = \sqrt{\frac{4A}{\pi} + D_{i}^{2}} - t_{c}$$
$$M = \frac{W}{g}; K_{H0} = \frac{4\pi^{2}M}{T^{2}}; T_{r} = \frac{GA}{K_{H0}}$$

Preliminary sizing: Iterative

February 15, 2018

Preliminary sizing: Iterative

•
$$D_i = \sqrt{4 \frac{(Q_d/W) \times W}{\pi \sigma_L}}$$

- Assume a value of shear modulus, G (0.4-1.0 MPa)
- Diameter of bearing, D_o , and total rubber thickness, T_r , is selected based on lead core diameter D_i

-
$$D_o$$
 should be between $3D_i$ and $6D_i$

- $-T_r$ should be equal to, or greater than D_i
- Lateral stiffness of the isolation system is obtained

$$-K_d = G \frac{\pi (D_o^2 - D_i^2)}{4T_r}$$

Preliminary sizing: Iterative

- The MCE displacement of the system is obtained using an iterative equivalent lateral force procedure
 - Assume a MCE displacement, D_M
 - Calculate effective stiffness: $K_M = K_d + \frac{Q_d}{D_M}$

 - Effective isolation period: $T_M = 2\pi \sqrt{\frac{W}{gK_M}}$ Calculate effective damping: $\beta_M = \frac{4Q_d(D_M Y)}{2\pi K_M D_M^2}$ (assume Y between 0.05 T_r to 0.1 T_r)
 - Obtain the damping reduction factor, B_M , from code (e.g., ASCE 7, Table 17.5-1)
 - Calculate the displacement using response spectrum: $D_M = \frac{gS_{M1}T_M}{4\pi^2 B_M}$
 - If the obtained displacement does not match the assumed MCE displacement, iterate with the new assumption as the average of the two values.

Summary and conclusions

- Several numerical tools are available for analysis of elastomeric bearings
- Finite element and discrete modeling approaches are used for the analysis of isolation bearings
- Discrete method is more popular owing to its simplicity and computational efficiency
- Preliminary design of bearings can be done using simplified procedures
- The current state of practice does not include advanced behavior that might be important under extreme earthquake shaking
- User element and materials of elastomeric seismic isolation bearings implemented in OpenSees, ABAQUS and LS-DYNA can capture complex behavior

References

- Constantinou, M. C., Whittaker, A. S., Kalpakidis, I., Fenz, D. M., and Warn, G. P. (2007). "Performance of seismic isolation hardware under service and seismic loading." Technical Report MCEER-07-0012, University at Buffalo, State University of New York, Buffalo, NY.
- McVitty, W. J., & Constantinou, M. C. (2015). "Property modification factors for seismic isolators: design guidance for buildings." Technical Report MCEER-15-0005, University at Buffalo, State University of New York, Buffalo, NY.
- Constantinou, M., Kalpakidis, I., Filiatrault, A., and Lay, R. A. E. (2011). "LRFD-based analysis and design procedures for bridge bearings and seismic isolators." Technical Report MCEER-11-0004, University at Buffalo, State University of New York, Buffalo, NY.
- Kelly, J. M. (1993). Earthquake-resistant design with rubber. London, Springer-Verlag.
- Naeim, F. and J. M. Kelly (1999). Design of seismic isolated structures: From theory to practice. New York, John Wiley & Sons.

Towards a safer and resilient infrastructure

Thank You! Questions?

mkumar@iitb.ac.in

www.manishkumar.org